Machine learning based prediction for peptide drift times in ion mobility spectrometry

نویسندگان

  • Anuj R. Shah
  • Khushbu Agarwal
  • Erin S. Baker
  • Mudita Singhal
  • Anoop M. Mayampurath
  • Yehia M. Ibrahim
  • Lars J. Kangas
  • Matthew E. Monroe
  • Rui Zhao
  • Mikhail E. Belov
  • Gordon A. Anderson
  • Richard D. Smith
چکیده

MOTIVATION Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics techniques, such as in the elucidation of secondary structure information, identification of post-translational modifications, as well as higher identification rates with reduced experiment times. The high throughput nature of this technique benefits from accurate calculation of cross sections, mobilities and associated drift times of peptides, thereby enhancing downstream data analysis. Here, we present a model that uses physicochemical properties of peptides to accurately predict a peptide's drift time directly from its amino acid sequence. This model is used in conjunction with two mathematical techniques, a partial least squares regression and a support vector regression setting. RESULTS When tested on an experimentally created high confidence database of 8675 peptide sequences with measured drift times, both techniques statistically significantly outperform the intrinsic size parameters-based calculations, the currently held practice in the field, on all charge states (+2, +3 and +4). AVAILABILITY The software executable, imPredict, is available for download from http:/omics.pnl.gov/software/imPredict.php CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DETECTION AND MEASUREMENT OF ACETONE IN THE BREATH OF DIABETICS BY ION MOBILITY SPECTROMETRY METHOD

Background: The ion mobility spectrometry (IMS) is an analytical technique that is widely used due to its high sensitivity and speed for the detection of ionized molecules in gas phase and under atmospheric pressure. Breath analysis is a new method for obtaining information about person's clinical conditions that is considered by researchers. Human exhaled air contains a variety of components s...

متن کامل

Application of Ion Mobility Spectrometry for Determination of Morphine in Human Urine

In this study, a rapid, simple and sensitive ion mobility spectrometry (IMS) method with corona discharge as ionization source was described for the morphine determination in human urine. Morphine was extracted and purified from urine samples using solid phase extraction procedure with C18 column. It can offer the clean extracts which no extra peaks were observed in IMS. Under operating experim...

متن کامل

Extracted Fragment Ion Mobility Distributions: A New Method for Complex Mixture Analysis.

A new method is presented for constructing ion mobility distributions of precursor ions based upon the extraction of drift time distributions that are monitored for selected fragment ions. The approach is demonstrated with a recently designed instrument that combines ion mobility spectrometry (IMS) with ion trap mass spectrometry (MS) and ion fragmentation, as shown in a recent publication [J. ...

متن کامل

A novel approach to collision-induced dissociation (CID) for ion mobility-mass spectrometry experiments.

Collision induced dissociation (CID) combined with matrix assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) is described. In this approach, peptide ions are separated on the basis of mobility in a 15 cm drift cell. Following mobility separation, the ions exit the drift cell and enter a 5 cm vacuum interface with a high field region (up to 1000 V/cm) to undergo co...

متن کامل

A scanning frequency mode for ion cyclotron mobility spectrometry.

A new operational mode for an ion cyclotron mobility spectrometry instrument is explored as a possible means of performing high-resolution separations. The approach is based on oscillating fields that are applied to segmented regions of a circular drift tube. Ions with mobilities that are resonant with the frequency of field application are transmitted while nonresonant species are eliminated. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 26 13  شماره 

صفحات  -

تاریخ انتشار 2010